Lots of graphs and a tadpole picture

Publications: Electrophysiological diversity of neurons during development and plasticity

Brains consist of many cells called neurons: billions of them in a human brain, and hundreds of thousands in the brain of a small fish or a frog tadpole. Many of these neurons are very much alike, and work together to process information in the brain. Yet while they are similar, they are not exactly identical. By looking at how individual neurons within a specific type differ from each other, it is possible to understand more about how they work together.

We have now compared the properties of the neurons in a part of the brain of a developing frog tadpole that processes sensory information. These neurons appear relatively similar to each other in young tadpoles, yet as the tadpoles grow and their brains become more elaborate the neurons become increasingly diverse, and their properties become more unique and nuanced.

Full citation:
Ciarleglio, C. M., Khakhalin, A. S., Wang, A. F., Constantino, A. C., Yip, S. P., & Aizenman, C. D. (2015). Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity. eLife,4, e11351.