All posts by khakhalin

New paper: Onshore Wind Speed and Microbial Aerosols at Urban Waterfronts

In this new paper, Bard professor Elias Dueker and collaborators study microbes that fly in the air, after small droplets of water get lifted from the ocean surface by the coastal wind. They found that depending on the wind speed, different amounts of microbes were picked up, and they were transported different distances into the city. They also described which types of microbes are more likely to get airborne, compared to those found below the water surface.

Citation: Dueker, M. E., O’Mullan, G. D., Martínez, J. M., Juhl, A. R., & Weathers, K. C. (2017). Onshore Wind Speed Modulates Microbial Aerosols along an Urban WaterfrontAtmosphere8(11), 215.

New paper: Susceptibility to ecological traps is sensitive to spatial isolation

Animals caught in ‘ecological traps’ prefer the worst available habitats. This happens when environmental change makes habitats look superficially attractive when they are actually dangerous. Ecological traps are increasingly common, but it remains unclear how susceptible animals are to them. Aquatic flies, for example, can be highly attracted to asphalt because it reflects polarized light the same way that natural water bodies do.

In this study, Bard professor Bruce Robertson and his students exposed seven ecologically similar species of aquatic flies to different levels of polarized light, including abnormally strong polarized light associated with man-made habitats that are dangerous to them. They found that, in every species tested, animals actually preferred levels of polarized light typical of asphalt where their eggs perish, over levels typical of natural ponds. We also found that the degree of their preference depended on whether the cue was closer or more distant from a natural river.

Citation: Robertson, B. A., Keddy-Hector, I. A., Shrestha, S. D., Silverberg, L. Y., Woolner, C. E., Hetterich, I., & Horváth, G. (2018). Susceptibility to ecological traps is similar among closely related taxa but sensitive to spatial isolationAnimal Behaviour135, 77-84.

Saw Kill Watershed Community grant

In the fall 2017, Assistant Professor of Biology, Eli Dueker, was awarded a grant from the New York State Department of Environmental Conservation for his work with the Saw Kill Watershed Community (SKWC), which he founded. The goal of the project is to improve understanding about connections between land-use and stream/watershed conditions. SKWC will develop and implement long-term planning to help preserve the watershed and reduce threats and will expand regionally by reaching out to neighboring watershed community groups.

Read more: https://sagehouse.blog/2017/11/20/college-and-community-a-watershed-partnership/

Student Research: Biz Osborne-Schwartz

In her senior project, Biz Osborne-Schwartz’ 17 sought to improve oral rehydration therapies (ORT) for cholera patients. Working with her advisor, Professor Brooke Jude, Biz developed a protocol to study the attachment of Vibrio cholerae to chitin (a stand-in for a human intestinal cell) and other carbohydrates. This new protocol allowed her to test if adding a certain type of chemical compounds, called enzyme resistant carbohydrates, to ORT could decrease the number of bacteria in a patient infected with cholera. Biz observed a decrease in Vibrio cholerae attached to chitin beads when incubated in ORT with enzyme resistant starches, which means that more complex ORT are promising for cholera patients!

Student research: Silas Busch

In November 2017, Bard alum Silas Busch ’16 presented the work he did during his Bard senior project at a professional society meeting “Society for Neuroscience” in Washington DC. His poster won a travel award from the David Hubel Memorial Fund (distributed through the Faculty for Undergraduate Neuroscience society).

In his work, Silas studied how neural cells in the brain of frog tadpoles change their spiking properties when tadpoles experience different types of visual and auditory stimuli. To measure neuronal properties, Silas used a fancy electrophysiological technique, called Dynamic Clamp. He found that neurons become tuned to better process stimuli perceived by the brain, and that when visual and auditory stimuli are combined, it leads to interesting, and somewhat unexpected changes in neuronal tuning.

Presentation info: S.E. Busch, A.S. Khakhalin. Midbrain neurons show temporal retuning of intrinsic properties in response to patterned uni- and multisensory stimulation. Wed Nov 15, 2017. Washington DC.

Biology Seminar: Fall 2017

The Biology Seminars (biosem) happen every Thursday at noon, in RKC 103 (large auditorium). The list of speakers and talks this semester:

  • 9/7 INFORMATION SESSION
  • 9/14 Krishna Veeramah,  SUNY Stony Brook. Ancient European Dog Genomes Reveal Continuity Since the Early Neolithic
  • 9/21 Ilyas Washington, Columbia University.
  • 9/28 Wilfredo Colon, RPI. Degradation-resistant proteins: Biological, Disease, and Biotechnology Implications
  • 10/5 Helen Alexander, Kansas University. Effects of Viruses on Plant Fitness: A Plant Ecologist’s Foray into Plant Virus Ecology
  • 10/12 Dave Alexander, Kansas University. The Evolution of Animal Flight From a Biomechanics Perspective
  • 10/19 NO SEMINAR
  • 10/26 Pia-Kelsey O’Neill, Columbia University.
  • 11/2 Jessica Hua, SUNY Binghamton. Poisons, Predators, and Parasites: Integrating Ecological and Evolutionary Complexity into Toxicology
  • 11/9 Sarah Dunphy-Lelii, Bard College. The Chimpanzees of Ngogo
  • 11/16 Felicia Keesing, Bard College. Integrating Livestock and Wildlife in an African Savanna
  • 11/23 THANKSGIVING RECESS
  • 11/30 Felicia Keesing. How to Plan a Meaningful Summer
  • 12/7 Student talks
  • 12/14 Student talks

New paper: integrating wildlife and livestock in central Kenya

In this paper, Felicia Keesing and her collaborators explore the potential for positive interactions between livestock and wildlife in African savannas. Historically, the prevailing view has been that savanna landscapes should be managed for either livestock or wildlife, but not both. Keesing and her colleagues suggest that under some conditions, both groups — and the humans who share their habitat — could benefit ecologically and economically by sharing land.

Citation: Allan BF, Tallis H, Chaplin‐Kramer R, Huckett S, Kowal VA, Musengezi J, Okanga S, Ostfeld RS, Schieltz J, Warui CM, Wood SA, Keesing F. Can integrating wildlife and livestock enhance ecosystem services in central Kenya?. Frontiers in Ecology and the Environment. 2017 Aug 1;15(6):328-35. Full text at Research Gate.

Student research: Daniella Azulai

In her senior project, Daniella Azulai ’17 studied antibiotic resistance of a bacterium Pseudomonas aeruginosa: a pathogen that plagues patients with compromised immune systems and people with cystic fibrosis. Daniella developed a new method to test how virulent (harmful) different strains of these bacteria are. Using larval zebrafish, she found that antibiotic resistance does not necessarily correlate with virulence, but rather that each strain showed a unique profile, pointing to differences in the evolution of these strains over time.

Hudson Valley Life Sciences Symposium 2017

14 students from Bard presented their posters at the yearly local science conference named “Hudson Valley Life Sciences Group Spring Research Symposium”, in SUNY New Paltz on April 28. Other schools that presented their work included SUNY New Paltz, Vassar College, and Marist College. The conference was clearly very productive (big thanks to the organizers!), and helped Bard seniors to hone their presentation skills, and practice their senior project elevator speeches!

Student research: Sydney Pindling

Sydney Pindling finished her senior project in the fall of 2016, under the supervision of professor Gabriel Perron. Sydney developed a promising new model to study the effects of antibiotics, such as streptomycin, on the animal microbiome.  She exposed larval zebrafish (Danio rerio) to very low concentrations of streptomycin; in fact, the concentrations Sydney used were similar to that observed in in environment: rivers and streams near human settlements. Sydney found that that even at these low concentrations streptomycin changed the microbiome in the larval fish, and increased larva mortality. She also observed that the microbes in the fish gut were selected for genes associated with antibiotic resistance. These results may have relevance both for studies of antibiotic effects in humans, and for the environmental research of fish populations.