Category Archives: publications

New paper: integrating wildlife and livestock in central Kenya

In this paper, Felicia Keesing and her collaborators explore the potential for positive interactions between livestock and wildlife in African savannas. Historically, the prevailing view has been that savanna landscapes should be managed for either livestock or wildlife, but not both. Keesing and her colleagues suggest that under some conditions, both groups — and the humans who share their habitat — could benefit ecologically and economically by sharing land.

Citation: Allan BF, Tallis H, Chaplin‐Kramer R, Huckett S, Kowal VA, Musengezi J, Okanga S, Ostfeld RS, Schieltz J, Warui CM, Wood SA, Keesing F. Can integrating wildlife and livestock enhance ecosystem services in central Kenya?. Frontiers in Ecology and the Environment. 2017 Aug 1;15(6):328-35. Full text at Research Gate.

Student publication: Molly McQuillan

Biology senior Molly McQuillan and professor Arseny Khakhalin coauthored on a neuroscience paper published in the prestigious life sciences journal eLife.  The paper presents new research that explains how the developing brain learns to integrate simultaneous sensory cues—sound, touch, and visual—that would be ignored individually.

Read full press-release from Bard

Full citation: Truszkowski, Torrey LS, Oscar A. Carrillo, Julia Bleier, Carolina Ramirez-Vizcarrondo, Molly McQuillan, Christopher P. Truszkowski, Arseny S. Khakhalin, and Carlos D. Aizenman. “A cellular mechanism for inverse effectiveness in multisensory integration.” eLife 6 (2017): e25392.

Publications: Is biodiversity bad for your health?

Why should people protect biodiversity? Researchers from a number of disciplines have proposed ethical, aesthetic, and utilitarian reasons to do so. But recently some researchers have argued that ecosystems that support high diversity pose a danger to human health. They argue that because areas with high biodiversity are likely to support a high diversity of potential human pathogens, these areas should be hotspots for the emergence of infectious diseases.

In this paper, Felicia Keesing and Rick Ostfeld evaluate the evidence for three necessary links that are required by this argument. They found no support for one critical link—that high total diversity of pathogens correlates with high diversity of actual or potential pathogens of humans. This suggests that high biodiversity should not be expected to lead to more infectious diseases of humans. In contrast, there is now substantial evidence that high diversity protects humans against the transmission of many existing diseases.

Citation: Ostfeld, R. S., & Keesing, F. (2017). Is biodiversity bad for your health?. Ecosphere, 8(3).

Publications: Microbial exchange among water, sediment, and air

A paper, recently published by Eli Dueker and co-authors, analyzes migration and exchange of bacteria between sewage, sediment, water, and air. The papers discusses possible implications of this often overlooked exchange of small particles on public health, and on strategies of waste disposal.

Citation: O’Mullan, G. D., Dueker, M. E., & Juhl, A. R. (2017). Challenges to Managing Microbial Fecal Pollution in Coastal Environments: Extra-Enteric Ecology and Microbial Exchange Among Water, Sediment, and Air. Current Pollution Reports, 3(1), 1-16.

Publications: Ecology of Sacred Groves

For centuries followers of the Ethiopian Orthodox Church have conserved patches of native trees around church buildings as sacred sanctuaries for church communities. Today there are as many as 20 000 church forests in northern Ethiopia’s Amhara Peoples National Regional State – these unique social-ecological systems offer an opportunity to study multiple natural forest patches across a large multipurpose landscape, including in many places where little or no other natural forest remains. This image is a satellite photo of Robit Bata church, located 15 km north of the city of Bahir Dar, and three km upstream of Lake Tana (the largest lake in Ethiopia). The natural forest at Robit Bata church hosts some of the only mature indigenous trees in the local landscape. In her recent paper, Bard professor Cathy Collins and colleagues illustrate how understanding patterns in the tree species composition of church forests requires consideration of the complex interplay between ecological gradients and anthropogenic influences over time. This publication also made a cover page of the January issue of “Ecography” journal.

Citation: Reynolds, T. W., Collins, C. D., Wassie, A., Liang, J., Briggs, W., Lowman, M., … & Adamu, E. (2017). Sacred natural sites as mensurative fragmentation experiments in long‐inhabited multifunctional landscapes. Ecography, 40(1), 144-157.

Publications: Solar panels and aquatic insects

Professor Bruce Robertson had two new publications in the fall 2016: one review on the theory of evolutionary traps, and an experimental study, in which he and his colleagues from Hungary looked at the polarizing properties of solar panels, and the effects this light polarization may have on the life cycle of aquatic insects. This line work was since continued by Bard students, and will undoubtedly bring more senior projects next year.


Száz, D., Mihályi, D., Farkas, A., Egri, Á., Barta, A., Kriska, G., … & Horváth, G. (2016). Polarized light pollution of matte solar panels: anti-reflective photovoltaics reduce polarized light pollution but benefit only some aquatic insects. Journal of Insect Conservation, 20(4), 663-675.

Robertson, B. A., & Chalfoun, A. D. (2016). Evolutionary traps as keys to understanding behavioral maladapation. Current Opinion in Behavioral Sciences, 12, 12-17.

Publications: A model of tadpole brain detects impeding collisions

In the paper published in “Frontiers Neural Circuits”, Bard professor Arseny Khakhalin shows that a realistic artificial neural network, modeled after tadpole brain, can detect impeding collisions.  In this study the network was not specifically designed or tuned for any particular task, but rather it was made to incorporate as much information about the tuning of actual neurons in real biological tadpole tecta as possible. After this realistic model was created, the team studied its properties in ways that would be hard to do in a real tadpole, and found that the network is uniquely suited to solve one of the key problems animals are facing: it naturally detects looming stimuli, and can help spatial navigation and predator detection.

Citation: Jang, E. V., Ramirez-Vizcarrondo, C., Aizenman, C. D., & Khakhalin, A. S. (2016). Emergence of selectivity to looming stimuli in a spiking network model of the optic tectum. Frontiers in Neural Circuits, 10.

Full text link:

Publications: No effect of transformation on the evolution of phage resistance

In this paper, professor Gabriel Perron and the team tested a particular hypothesis about the mechanisms of bacterial evolution, and found that the data did not support this hypothesis. It is a really nice example of a publication that faithfully presents important negative results, when an attractive, logical, and perfectly plausible hypothesis has to be rejected based on experimental evidence.

Citation: McLeman, A., Sierocinski, P., Hesse, E., Buckling, A., Perron, G., Hülter, N., … & Vos, M. (2016). No effect of natural transformation on the evolution of resistance to bacteriophages in the Acinetobacter baylyi model system. Scientific Reports, 6.

Link to full text:

Publications: Evaluating exotic plants as evolutionary traps for nesting Veeries

In this study, Bruce Robertson and coauthors tested whether non-native plant species may cause problems to Veeries when birds try to build nests in these plants. It appears that Veeries do indeed prefer non-native plants to native ones, but fortunately in this case their preference is not maladaptive, as non-native plants still provide enough protection and concealment for the nests.

Full citation:
Meyer, L. M., Schmidt, K. A., & Robertson, B. A. (2015). Evaluating exotic plants as evolutionary traps for nesting Veeries. The Condor, 117(3), 320-327.