Nsikan Akpan ’06

Nsikan transferred to Bard from Bard College at Simon’s Rock after his sophomore year. In the summer of 2005, he did research on neuroendocrinology with Bruce S. McEwen of Rockefeller University. For his senior project, he did research on NMDA receptors in zebrafish. He was a research assistant in the Department of Pathology at Tufts Medical School studying Trypanosoma cruzi, the causative agent of Chagas disease. In 2012, he obtained his Ph.D. from Columbia University for studies of drug treatments for stroke victims. He is now a medical reporter who specializes in infectious diseases and mental health. His writing has been featured in Medical Daily (International Business Times), Scientific American, Science nagazine, NatureNews, and The Scientist magazine.

Links:

Biology Seminar series: Spring 2016

Biology seminar schedule

Fall 2016

Publications: Microbial fuel cells in the classroom

A publication by Brooke and Craig Jude in JMBE is focused on building microbial fuel cells (bacterially powered batteries) in the college and local school classroom! These microbial fuel cells serve as lab projects in Brooke Jude’s BIO145 Environmental Microbiology course and are also constructed when local 8th grade classes visit Bard through Center For Civic Engagement (CCE) sponsored events (that are taught by Bard students!)

Citation and full-text link: Jude CD, Jude BA. Powerful Soil: Utilizing Microbial Fuel Cell Construction and Design in an Introductory Biology Course. J Microbiol Biol Educ. 2015 Dec 1;16(2):286-8. doi: 10.1128/jmbe.v16i2.934. eCollection 2015 Dec.

Parris Humphrey ’06

Parris Humphrey ’06 transferred to Bard. In his junior year, he traveled to Kenya with Dr. Felicia Keesing to study why the sandflies that transmit leishmaniasis, a tropical disease, are more abundant in areas without large herbivores like giraffes, zebras, and elephants. For his senior project, he figured out that deer can clear blacklegged ticks of the bacterium that causes Lyme disease. After graduation, he worked as a research assistant studying the molecular ecology of disease at the U. of Pennsylvania with Professor Dustin Brisson. As of early 2016 Parris is about to get a Ph.D. from the University of Arizona, where he studies disease ecology and evolution.

Links:

Faculty Research: Antibiotic resistance in ancient permafrost soil

The rise of antibiotic resistance found in microbial pathogens was driven by the use and misuse of antibiotics in modern medicine and agriculture. However, the extent to which antibiotic pollution impacted microbial communities found in soil and remote environments is unclear. Using a metagenomic approach to investigate microbes found in the Canadian high Arctic, Dr. Perron and colleagues found common microbial pathogens resistant to multiple antibiotics among these remote Arctic microbial communities. Dr. Perron’s team also showed that although antibiotic-resistant bacteria were also found in 5,000 years old permafrost soils, these bacteria did not show resistance profiles normally associated with infection.

Citation: Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, & Desai MM. (2015). Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE. 10: e0069533

Featured senior project: Abby Soussan

Batrachochytrium dendrobatidis (Bd) is a deadly pathogen of many species of amphibians. One of the most promising ways to combat its spread is to expose Bd zoospores to a purple pigment, violacein, which can kill Bd. Working with Professor Brooke Jude, Abby Soussan is determining whether Bd zoospores can sense and move away from the pigment, which would seriously inhibit the effectiveness of this potential treatment.

Faculty Research: Tadpole Model of Autism

In this paper a team of neuroscientists from Brown University and Bard College show that Xenopus tadpoles can be used as an experimental model to study molecular mechanisms of autism spectrum disorders (ASD). We used a chemical called valproic acid that is known to increase the incidence of ASD in humans, and studied its action on tadpoles. It turned out that tadpoles exposed to valproic acid developed abnormalities that are surprisingly reminiscent of that in ASD-affected humans. It suggests that tadpoles can indeed be used to study the original molecular reasons that make “autistic brains” develop differently than “normal brains”.

Citation: James EJ, Gu J, Ramirez-Vizcarrondo CM, Hasan M, Truszkowski TL, Tan Y, Oupravanh PM, Khakhalin AS, Aizenman CD. (2015). Valproate-Induced Neurodevelopmental Deficits in Xenopus laevis Tadpoles. The Journal of Neuroscience, 35(7), 3218-3229.

Free text at PubMed Central.

Press-release from Brown University.

Bard Science Outreach Days

It’s that time of year when we welcome 8th graders from Linden Avenue Middle School in Red Hook to spend a day at Bard taking science courses. Kids go through a sequence of 40-minute classes in computer science, math, chemistry, physics, and biology.

Bard biology students led an activity with microbial fuel cell batteries developed by Professor Brooke Jude. In the photo: Alessia Zabrano and Annie Kissel help to troubleshoot the wiring for the batteries.